107 research outputs found

    Algorithms for determining integer complexity

    Full text link
    We present three algorithms to compute the complexity n\Vert n\Vert of all natural numbers nN n\le N. The first of them is a brute force algorithm, computing all these complexities in time O(N2)O(N^2) and space O(Nlog2N)O(N\log^2 N). The main problem of this algorithm is the time needed for the computation. In 2008 there appeared three independent solutions to this problem: V. V. Srinivas and B. R. Shankar [11], M. N. Fuller [7], and J. Arias de Reyna and J. van de Lune [3]. All three are very similar. Only [11] gives an estimation of the performance of its algorithm, proving that the algorithm computes the complexities in time O(N1+β)O(N^{1+\beta}), where 1+β=log3/log21.5849631+\beta =\log3/\log2\approx1.584963. The other two algorithms, presented in [7] and [3], were very similar but both superior to the one in [11]. In Section 2 we present a version of these algorithms and in Section 4 it is shown that they run in time O(Nα)O(N^\alpha) and space O(NloglogN)O(N\log\log N). (Here α=1.230175\alpha = 1.230175). In Section 2 we present the algorithm of [7] and [3]. The main advantage of this algorithm with respect to that in [11] is the definition of kMax in Section 2.7. This explains the difference in performance from O(N1+β)O(N^{1+\beta}) to O(Nα)O(N^\alpha). In Section 3 we present a detailed description a space-improved algorithm of Fuller and in Section 5 we prove that it runs in time O(Nα)O(N^\alpha) and space O(N(1+β)/2loglogN)O(N^{(1+\beta)/2}\log\log N), where α=1.230175\alpha=1.230175 and (1+β)/20.792481(1+\beta)/2\approx0.792481.Comment: 21 pages. v2: We improved the computations to get a better bound for $\alpha

    On the distribution of a specific number theoretical sequence

    Get PDF

    Some inequalities involving riemann's zeta-function

    Get PDF

    A note on euler's constant

    Get PDF

    Some theorems concerning the number theoretical functions (n) and (n)

    Get PDF

    On the convergence of some irregularly oscillating series

    Get PDF

    The number of lattice points contained in certain convex domains

    Get PDF
    corecore